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Interacting multicomponent exciton gases in a potential trap:
Phase separation and Bose-Einstein condensation
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The system under consideration is a multicomponent gas of interacting paraexcitons and orthoexcitons
confined in a three-dimensional potential trap. We calculate the spatially resolved optical emission spectrum
due to interband transitions involving weak direct and phonon-mediated exciton-photon interactions. For each
component, the occurrence of a Bose-Einstein condensate changes the spectrum in a characteristic way so that
it directly reflects the constant chemical potential of the excitons and the renormalization of the quasiparticle
excitation spectrum. Moreover, the interaction between the components leads, in dependence on temperature
and particle number, to modifications of the spectra indicating phase separation of the subsystems. Typical
examples of density profiles and luminescence spectra of ground-state paraexcitons and orthoexcitons in Cu,O

are given.
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I. INTRODUCTION

Excitons in semiconductors have been promising candi-
dates for the observation of Bose-Einstein condensation for
several decades. At present, cuprous oxide (Cu,O) is in the
focus of experimental efforts due to the large binding energy
and long lifetime of the exciton states. In order to obtain
sufficiently high densities, entrapment by an external poten-
tial is an approved method.

The theoretical description of excitons in potential traps
has been carried out so far mostly in the frame of a model of
ideal bosons. Concepts for the inclusion of the interaction are
well known from the theory of atomic condensates'~* and
first applications to excitons exist, too.> Recent investigations
in the framework of a mean-field formalism in local-density
approximation (LDA) have shown distinct signatures of a
condensate in the decay luminescence spectrum of the non-
condensed excitons.® It is the aim of the present paper to
introduce a generalization of this theory to a multicomponent
gas of interacting paraexcitons and orthoexcitons, where the
consequences of the interaction on the condensation process
are of particular interest. We show results for the densities of
the individual components and their spatially resolved lumi-
nescence spectra for several parameter regimes and highlight
experimentally relevant cases.

II. THERMODYNAMICS OF EXCITONS
IN A POTENTIAL TRAP

The thermodynamics of a one-component Bose gas has
been investigated in detail, see, e.g., Refs. 1-4. First appli-
cations of these concepts to excitons have been presented in
Ref. 5 and, looking at spectral signatures of a condensate, in
Ref. 6. In analogy to generalizations for multicomponent
atomic gases, e.g., Refs. 7-12 and spinor polaritons, e.g.,
Refs. 13 and 14, in the following, we generalize this ap-
proach to the case of multiple species of excitons, i.e.,
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PACS number(s): 78.20.—e, 78.30.—j, 71.35.Lk

paraexcitons and orthoexcitons, adopting a mean-field cou-
pling scheme between the components. '

The multicomponent exciton gas is considered in second
quantization. We start from the Hamiltonian for a
K-component system in the grand-canonical ensemble,
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with respective external potentials V; and chemical potentials
wu; for each species. We assume a contact potential for the
exciton-exciton interaction with the matrix #;; containing the
intraspecies and interspecies interaction strengths. Its compo-
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The Bose field operator ¢; obeys the Heisenberg equation of
motion
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We decompose the field operators ; in the usual fashion,

(r,1) = D(r) + Pi(r,1), (4)

where ®; is the (scalar) condensate wave function with

®@,(r)=(i(r,1))={(;(r)) and , is the operator of the thermal
excitons. Inserting the decomposition Eq. (4) into Eq. (3) and
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following the steps of Ref. 1, we obtain (arguments dropped
for the sake of brevity)
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with n; —(I) &+, my;;=PD;+7;, and the normal and

anomalous averages n,j—(tﬁi zﬂj) and ; j—<lzilzj>, respectively.
Equation (5) generalizes the familiar Gross-Pitaevskii equa-
tion by including (i) the coupling to the thermal excitons and
(ii) the coupling of multiple components.

In a first approximation, we neglect all nondiagonal aver-
ages, i.e., ;=i =m;=n;=0 Vi#j, reducing Egs. (5) and
(6) to effectwe one- spec1es equations with an additional
mean-field contribution from the other species,
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Thanks to this simplification, Eq. (8) can be formally solved
by a Bogoliubov transformation,

=2 [u(@)a(@)e ™ + v} (a)af (o)™, (9)

o

where o enumerates the quasiparticle states. Thereby the
Bogoliubov amplitudes u; and wv; satisfy the relation
S lu(0)?=v,(0)*]=1. The excitation spectrum E; (o) is
given by the solution of the eigenvalue problem,
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Equations (7) and (10) are the multicomponent generali-
zations of the Hartree-Fock-Bogoliubov equations. They rep-
resent a system of 3K equations which are coupled via the
interaction matrix elements &;;.

To guarantee gapless spectra, we next apply the Popov
approximation, i.e., we neglect the anomalous averages 71;; in
Eqgs. (7) and (10) and find
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Since the extension of the potential trap is large compared
to the typical length scale of the system (e.g., the thermal de
Broglie wavelength of the excitons), we can use the LDA.
Then the excitons are treated as a locally homogeneous sys-
tem and the spatial dependence enters only via the trap po-
tential. In that case, the Bogoliubov equations are readily
solved, yielding the density niTE n;; of thermally excited ex-
citons as

&k | Li(k,r) 1| 1
n} (r) =J Q{Ei(k,r){ns[ﬂ(k,r)l + 5} - 5]
X O[E;(k,r)?] (14)

with ng(E)=[exp(E/kgT)—1]"" being the usual Bose func-
tion. The excitation spectrum E; is explicitly given by

and

E{(k,r) = VL(k,r)> = [ (0) 1, (15)
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with n{=|®|* and n,=n;=n!+n. In consistence with the
LDA, we apply the Thomas-Fermi approximation to the
Gross-Pitaevskii equation, neglecting the kinetic-energy term
in Eq. (12). Then we obtain finally for the densities of the
condensates
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Expressions (14)—(17) have to be solved self-consistently.
Although they look very similar to the one-component case,
a coupling between the components appears via L; and n;.

In what follows we calculate the densities of excitons in
Cu,0 in a strain induced potential trap.'® In addition to the
paraexcitons (labeled “p”), two spin prOJecnons of orthoex-
citons are captured by the trap, denoted by “+” and “-,”
while the zero component is expelled and plays no role.
Thus, the number of components K=3. In addition to the
usual symmetry of the interaction matrix, /;=h; with
i,j=p,+,—, in our case it holds that h,,=h__ and h,,=h,_
leaving four independent parameters £,,,, h.,, h,,, and h,
As extensive works on two-component systems7 .12 have
shown, one of the most interesting aspects of multicompo-
nent systems—the occurrence of phase separation—is
closely tied to the proportions of interspecies and intraspe-
cies interaction strengths.
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According to Eq. (2), the interaction strengths are given
by the s-wave scattering lengths of the corresponding chan-
nels, which can be obtained by the solution of the four-
particle scattering problem. The case of positronium-
positronium scattering some time ago received much
attention'””' and quite reliable values of the scattering
length for both the singlet and the triplet channel have been
obtained. In contrast, the description of exciton-exciton
interaction is a long-standing problem and so far no
satisfying solution for the general case has been obtained.
Especially for Cu,0, we expect a strong effect of the nonpa-
rabolicity of the valence band® and of the rather large
electron-hole exchange interaction’?’ on the scattering
lengths. Therefore, the values we deduced from the scatter-
ing lengths of the positronium problem given in Ref. 17
(h,,=0.71 hy,, h,,=033 h,, and h, =1.77 h,, with
h,p=T7.5X 107* peV um?), should be considered as repre-
sentative, only. Nevertheless, they allow to show the general
behavior of the multicomponent exciton system. In the cal-
culation we also neglect the difference in the paraexciton and
orthoexciton mass due to the k-dependent exchange
interaction.??

III. LUMINESCENCE SPECTRUM

Excitons decay by emitting photons. This takes place ei-
ther directly, whereby momentum conservation requires that
only excitons with the same momentum as the emitted pho-
tons are involved, or with assistance of momentum supplying
phonons such that all exciton states can participate in the
optical emission. Because the optical wavelength of the
emission is much smaller than the trapped exciton cloud, we
apply a local approximation to the emission spectrum,
which, for the homogeneous case, is determined by the ex-
citonic spectral function A(k, w),>>?*

I(r, @) = 2m|Si(k = 0)* 8o’ — p;)ns (r)

+ E |Si(k)|2”3(ﬁw' - u)A(r kAo — )
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with S;(k) representing the exciton-photon coupling. The
spectral function is given by the Bogoliubov amplitudes u;
and v, and the quasiparticle spectrum in Eq. (15),

Ai(r,k, w) = 27h{ul(k,r) o - Efk,r)]

-vi(k,r)dfiw+ E(k,r)]}. (19)
In order to account for a finite spectral resolution being im-
portant for comparison with measured spectra, we convolute
the spectral intensity, Eq. (18), with a slit function of the
shape exp[—(w/A)*]. Here, A is a measure for the spectral
resolution. Furthermore, in a typical experimental situation,
one images a small stripe of width 2Ax elongated along the z
direction onto the entrance slit of a spectrograph. Integrating
over the y direction perpendicular to z we obtain the spatially
resolved spectrum of the thermal excitons (in the following,
the direct condensate contribution is not considered),
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In the case of phonon-assisted transitions (being relevant
for the orthoexcitons), we have o' =w—E,x/fi—wyhonon With
E,x being the excitonic band gap of the semiconductor. We
assume S(k) to be a constant. Then the first term in Eq. (18)
gives rise to a J-shaped luminescence line at the position of
the chemical potential with a strength determined by the con-
densate density.

For trapped paraexcitons, the zero-phonon decay is
relevant and can be treated by setting w'=w—E,y/fi and
S(k)=S,0(k—Kk). Here Kk is the wave vector of the intersec-
tion of photon and exciton dispersion. Its modulus is given
by ko=Exn/fic, where n is the refraction index and c is the
vacuum velocity of light. Due to the form of S(k), the con-
densate itself does not contribute to the direct luminescence
process.

However, as discussed for the one-component exciton gas
in Ref. 6, in case of a potential trap there will be indirect
signatures of the condensate in the spatially resolved lumi-
nescence spectrum. The spectral line shape follows the den-
sity distribution in the trap, which in turn is bordered by the
minimal excitation energy E(k=0,r). For a noncondensed
gas the latter quantity is roughly parabolic due to the trap-
ping potential while it is zero in the presence of a conden-
sate. Thus with increasing particle number (or decreasing
temperature) the flat bottom of the spectrum of thermal ex-
citons may be a footprint of Bose-Einstein condensation.

(20)

IV. RESULTS

We evaluate the density distributions of the trapped exci-
tons in an iterative way. In each step, we keep the distribu-
tions of two of the components fixed. Under the constraint of
fixed particle number, we iterate the subset of Egs. (14)—(17)
belonging to the third component to self-consistency. We
cycle through the components until self-consistency of the
whole system, Egs. (14)—(17), is achieved.

Depending on the temperature and particle numbers in the
trap, there may occur six distinct situations, featuring a con-
densate of (i) none of the species, (ii) only the paraexcitons,
(iii) only one species of orthoexcitons, (iv) both species of
orthoexcitons, (v) paraexcitons and one species of orthoex-
citons, and (vi) all species. To analyze these cases, we set the
particle numbers of each component to one of two values:
N,;=5X10° or N;=5X 108 for i=p,+,—, respectively. We get
a rough estimate of the corresponding critical temperatures
by applying a harmonic approximation to the Hertzian po-
tentials. Then, a simple Thomas-Fermi calculation for the
single-component case® yields 79~2 K for N=5x 10° and
T~1 K for N=5x 108,
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FIG. 1. (Color online) Potentials and density profiles in z
direction at (x,y)=(0,0), and luminescence spectra for paraexcitons
(left column) and ortho(—)excitons (right column) for a tempera-
ture of 7=2.2 K and particle numbers of N,=5X 10° and
N_=N,=5X% 108 in the trap. The corresponding chemical potentials
are w,=-2260 weV and p_=pwm,=-5920 weV. Upper row: exter-
nal trap potential V;, quasiparticle energy at k=0 shifted by u (i.e.,
renormalized potential) E(0,z,0), and the same quantity without
interspecies interaction E;4(0,z,0). Middle row: densities of ther-
mal excitons with (rn”) and without interspecies interaction (ng,).
Lower row: luminescence spectra.

For our calculations, we use values of A=41 ueV for the
spectral resolution and Ax=25 um for the entrance slit of
the spectrograph being typical for a triple high-resolution
spectrograph used in the current experiments which are
underway.?® In the following figures we show the
respective trap potentials V;, minimal excitation energies
Ei(k=0,z,0=0), and density distributions of paraexcitons
and orthoexcitons versus the z coordinate. We compare the
results to the case without intercomponent interaction (la-
beled “id”).

We first investigate case (i) by setting N,=5X 10,
N.=5X10%, and a temperature T=2.2 K well above both of
the estimated critical values. As Fig. 1 shows, in the absence
of any condensate, the line shapes E;(k=0,z,0=0) roughly
follow the external potentials and the presence of multiple
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FIG. 2. (Color online) Same presentation as in Fig. 1 but for a
temperature of 7=1.2 K and particle numbers of N,=5X 10° and
N_=N,=5X10% in the trap. The chemical potentials are
#p==2140 eV and p_=u,=-5610 weV. In the middle row, ad-
ditionally the densities of condensed excitons with (n€) and without
interspecies interaction (nj,) appear.

components causes only a weak additional renormalization.
Both paraexciton and orthoexciton densities—the latter be-
ing equal for + and — species—concentrate in the centers of
their traps. A noticeable redistribution of the orthoexcitons
with respect to the one-component case results from the large
number of paraexcitons as well as from the ortho-ortho in-
teraction. The corresponding luminescence spectra of ther-
mal excitons are shown in Fig. 1, lower row. Because the
modulus of the photon vector |ky|~30 wm™! is rather small,
the integrated zero-phonon spectrum of the paraexcitons al-
most directly resembles the minimal excitation energy
Ep(k=0,z,Q=0). In the case of orthoexcitons, every k vec-
tor contributes and we find a broad energy distribution above
E.(k=0,z,0=0).

Keeping the particle numbers constant, we lower the tem-
perature to 7=1.2 K and show case (ii) in Fig. 2. Now the
renormalized potential of the paraexcitons (Fig. 2, upper left
panel) is cut at the chemical potential causing an almost flat
bottom of the luminescence spectrum (Fig. 2, lower left
panel). Again the densities of thermal and condensed paraex-
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FIG. 3. (Color online) Same presentation as in Fig. 1 but for a
temperature of 7=1.2 K and particle numbers of N,=N,=5X 108
and N_=5X%10° in the trap. The chemical potentials are
#p==2310 peV, u,=-5550 peV, and pn_=-5490 ueV.

citons show no significant deviation from the single compo-
nent case (Fig. 2, middle left panel). In contrast, while iso-
lated orthoexcitons would have been condensed, there is no
orthocondensate in the fully interacting case, which shows
that the presence of multiple repulsive components lowers
the critical temperature. Due to the even higher concentration
of paraexcitons and the different minimum positions of the
external potentials (z,=174 wm and z..=164 um), the ther-
mal orthoexcitons are slightly pushed aside (Fig. 2, middle
right panel). Their spectrum (Fig. 2, lower right panel) is
qualitatively nearly unchanged with respect to case (i). How-
ever, due to the lower temperature, the spectrum is less wide-
spread. Furthermore, the chemical potential nearly touches
the renormalized potential causing already a smoother curva-
ture of the spectral shape.

If we exchange the particle numbers of paraexcitons
and one species of orthoexcitons, i.e., N,=5X10°
N,=N_=5X 108, we realize case (iii), which is presented in
Fig. 3. While in this case the density distributions of thermal
and condensed ortho(+)excitons deviate only weakly from
the one-component case, the displacement of the thermal
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FIG. 4. (Color online) Same presentation as in Fig. 1 but for a
temperature of 7=1.2 K and particle numbers of N,=5X 108 and
N_=N,=5X10° in the trap. The chemical potentials are
#p==2300 peV, u_=-5420 peV, and pu,=-5470 peV.

paraexcitons is expressed in a heavily distorted zero-phonon
spectrum.

Increasing also the particle number of the remaining
orthospecies by an order of magnitude, we generate case (iv),
depicted in Fig. 4. As Shi et al.’ showed, even for finite
temperature the condition for phase separation of mutually
interacting trapped condensates coincides with the 7=0 re-
sult of Ho and Shenoy:’ hi_>h ++h__. Due to their strong
repulsion, the two orthocondensates fulfill this condition and
separate into a ball-and-shell structure with finite overlap, as
seen in Refs. 7 and 8. Yet, as found in Ref. 12, at 7>0 no
pure + or — phases exist and the respective thermal particles
are not entirely expelled. References 8 and 27 pointed out
that in general the component with the weaker self-
interaction forms the outer shell. In the case of orthoexcitons,
this criterion does not apply and the labels + and — can be
interchanged in all the results presented here. In principle,
there should exist an unstable solution with equal distribu-
tions of the orthocondensates. The breaking of this symmetry
is a consequence of our iterative numerical method. Because
of the symmetry of the interaction, the paraexcitons react to
the combined density of the orthoexciton species. That is
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FIG. 5. (Color online) Same presentation as in Fig. 1 but for a
temperature of 7=1.05 K and particle numbers of N,=5 X 10° and
N_=N,=5X10% in the trap. The chemical potentials are
#p==2140 peV, u_=-5585 peV, and p,=-5580 ueV.

why the distortion of the paraspectrum is strongest in the
area of overlapping orthocondensates.

Let us switch back to the parameters of case (ii), i.e.,
N,=5X 10° and N,=N_=5 X 10%, and lower the temperature
to T=1.05 K. As Fig. 5 shows, besides condensed paraexci-
tons we now find a small condensate of only one species of
orthoexcitons [case (v)]. While in the single-component case,
for N,=N_, both orthospecies have the same critical tem-
perature, now the mutual repulsion prevents the simulta-
neous condensation of the second species. We have to lower
the temperature to 7=0.8 K, to get condensates of all the
components [case (vi), Fig. 6]. While the orthospecies again
form a ball-and-shell structure, orthocondensate and para-
condensate do not separate because of their weak interaction
(2, <hyyh,.).

p+

V. CONCLUSION AND OUTLOOK

We have presented a theoretical approach for the descrip-
tion of multicomponent interacting excitonic gases in poten-
tial traps. The resulting system of equations has been subject
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FIG. 6. (Color online) Upper and lower row: same presentation
as in Fig. 1, middle row: density profiles and potentials for paraex-
citons (left column) and both orthospecies (right column) for a tem-
perature of 7=0.8 K and particle numbers of N,=5X 10° and
N_=N,=5X10% in the trap. The chemical potentials are
#p=—2140 peV, u_=-5560 weV, and u,=-5570 peV.

to a number of approximations to make it numerically fea-
sible. Finally, coupled multicomponent equations for the
densities of thermal excitons in Hartree-Fock-Bogoliubov-
Popov approximation and the condensate densities following
from the Gross-Pitaevskii equation in Thomas-Fermi ap-
proximation have been obtained and numerically solved.
Compared to previous calculations,® an experimentally real-
istic, anharmonic trap potential has been used. Six “typical”
(but not necessarily experimentally realizable) situations
leading to Bose-Einstein condensate in one or more of the
species have been compared. The spatially resolved decay
luminescence spectra of thermal paraexcitons and orthoexci-
tons exhibit clear signatures of a condensate. On the one
hand, there is a flat bottom at the chemical potential known
from the single-component case. On the other hand, the in-
terspecies interaction causes additional modifications of the
spectra: if there is a condensate in one of the species, the
spectrum of the respective other component is clearly dis-
torted.
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TABLE I. Summary of cases (i)—(vi): occurrence of a condensate in one or more species, of spatial separation between ortho(+) (0,) and
ortho(-) (o_) excitons and of a deformation of the thermal paraexciton spectrum in dependence on temperature and particle numbers.

Case Temperature Orthoexciton Paraspectrum
No. (K) N,/5X% 10° N,/5%10° N_/5%10° Condensate? separation? deformation?
() 22 1 0.1 0.1

(i1) 1.2 1 0.1 0.1

(iii) 1.2 0.1 0.1 1 o_ N

(iv) 1.2 0.1 1 1 0,,0_ N N

(v) 1.05 1 0.1 0.1 p,o_

(vi) 0.8 1 0.1 0.1 D,04,0_ N

In a typical experiment in the bulk or involving rather
shallow potential traps, orthoexcitons are produced by laser
excitation, but are converted fast into paraexcitons at a rate
of 0.3 ns™!'.282 Therefore, under quasiequilibrium condi-
tions, the particle number ratio orthoexciton/paraexciton is
small which corresponds to the cases (i), (ii), (v), and (vi).
By increasing the stress, however, the conversion rate de-
creases by more than an order of magnitude.?’ By continuous
excitation of orthoexcitons, therefore, it should be possible to
obtain higher orthoexciton/paraexciton ratios like in cases
(iii) and (iv). For an exciton number of 5X 10°, the density
in the center of the trap is about 10'7 cm™ which is experi-
mentally achievable. The same holds for the considered tem-
peratures of 7=0.8...2.2 K.?

Table I summarizes the essential information obtained
from the cases (i)-(vi) discussed above. Obviously, three
conclusions can be drawn: first, if the temperature is low
enough (below the respective critical temperature), every
species can form a condensate. Its primary signature is a flat
bottom of the respective spectrum. Second, a spatial separa-
tion occurs only between the condensates of the two
orthospecies, because of their strong repulsion. It shows up
only in the densities, not in the combined spectrum. There-

fore, it is important for future experiments to measure also
the spectrally integrated density profile. Third, at occurrence
of any orthocondensate but no paracondensate, the paraspec-
trum is distorted in a characteristic way indicating a conden-
sate in at least one of the other species.

The presented theory is obviously only a first step toward
a deeper understanding of the physics of trapped excitons. To
go beyond that includes the solution of the Gross-Pitaevskii
equation (without the Thomas-Fermi approximation) and the
inclusion of anomalous densities already on the single-
component level. Moreover, a general multicomponent
theory requires the consideration of mixed averages which
overcomes the effective single-component picture but com-
plicates the Bogoliubov transformation remarkably.
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